openfold.data.feature_pipeline

Classes

FeaturePipeline(config)

Functions

make_data_config(config, mode, num_res)

np_example_to_features(np_example, config, mode)

np_to_tensor_dict(np_example, features)

Creates dict of tensors from a dict of NumPy arrays.

class FeaturePipeline(config)
Parameters:

config (ConfigDict)

process_features(raw_features, mode='train', is_multimer=False)
Parameters:
Return type:

Mapping[str, ndarray]

make_data_config(config, mode, num_res)
Parameters:
  • config (ConfigDict)

  • mode (str)

  • num_res (int)

Return type:

Tuple[ConfigDict, List[str]]

np_example_to_features(np_example, config, mode, is_multimer=False)
Parameters:
np_to_tensor_dict(np_example, features)

Creates dict of tensors from a dict of NumPy arrays.

Parameters:
  • np_example (Mapping[str, ndarray]) – A dict of NumPy feature arrays.

  • features (Sequence[str]) – A list of strings of feature names to be returned in the dataset.

Returns:

A dictionary of features mapping feature names to features. Only the given features are returned, all other ones are filtered out.

Return type:

Dict[str, Tensor]