openfold.data.feature_processing_multimer

Feature processing logic for multimer data pipeline.

Functions

crop_chains(chains_list, msa_crop_size, ...)

Crops the MSAs for a set of chains.

pair_and_merge(all_chain_features)

Runs processing on features to augment, pair and merge.

process_final(np_example)

Final processing steps in data pipeline, after merging and pairing.

process_unmerged_features(all_chain_features)

Postprocessing stage for per-chain features before merging.

crop_chains(chains_list, msa_crop_size, pair_msa_sequences, max_templates)

Crops the MSAs for a set of chains.

Parameters:
  • chains_list (List[Mapping[str, ndarray]]) – A list of chains to be cropped.

  • msa_crop_size (int) – The total number of sequences to crop from the MSA.

  • pair_msa_sequences (bool) – Whether we are operating in sequence-pairing mode.

  • max_templates (int) – The maximum templates to use per chain.

Returns:

The chains cropped.

Return type:

List[Mapping[str, ndarray]]

pair_and_merge(all_chain_features)

Runs processing on features to augment, pair and merge.

Parameters:

all_chain_features (MutableMapping[str, Mapping[str, ndarray]]) – A MutableMap of dictionaries of features for each chain.

Returns:

A dictionary of features.

Return type:

Mapping[str, ndarray]

process_final(np_example)

Final processing steps in data pipeline, after merging and pairing.

Parameters:

np_example (Mapping[str, ndarray])

Return type:

Mapping[str, ndarray]

process_unmerged_features(all_chain_features)

Postprocessing stage for per-chain features before merging.

Parameters:

all_chain_features (MutableMapping[str, Mapping[str, ndarray]])